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On fluctuating flow of an elastico-viscous fluid past 
an infinite plate with variable suction 
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An exact solution is obtained for the two-dimensional flow of an elastico-viscous 
(Walters fluid B’) incompressible fluid past an infinite porous wall under the 
following conditions: (i) the suction velocity normal to the plate oscillates in 
magnitude but not in direction about a non-zero mean; (ii) the free-stream 
velocity oscillates in time about a constant mean. 

The response of the skin-friction to the fluctuating stream and suction ve- 
locity is studied for variations in the suction parameter A ,  the elasticity para- 
meter k and the frequency parameter w .  It is found that the back-flow at the wall 
is enhanced by k. For the same value of A ,  the amplitude of the skin-friction 
decreases with increasing k. Also an increase in k and w leads to a decrease in 
the phase of the skin-friction. For moderately large A and k, the phase of the 
skin-friction may be completely negative. 

1. Introduction 
Lighthill (1954) initiated an important class of two-dimensional time-depen- 

dent flow problems dealing with the response of the boundary layer to external 
unsteady fluctuations about a mean value. Stuart (1955) examined theinteresting 
features of an oscillating flow over an infinite flat plate with constant suction and 
no heat transfer between the fluid and the plate. Stuart’s problem was later 
studied by Reddy (1964) under a slip-flow boundary condition. Recently, 
Messiha (1966) and Soundalgekar (1968) examined Stuart’s and Reddy’s 
problems respectively, for the case of variable suction. The hydromagnetic 
problem corresponding to that of Stuart was investigated by Suryaprakasarao 
(1962, 1963), and Soundalgekar (1968) generalized Reddy’s and Messiha’s 
problems to account for the effects of a magnetic field. All the aspects of velocity 
field and temperature field in the case of the flow of incompressible, viscous and 
electrically conducting, or non-conducting, Newtonian fluids were discussed in 
the above references. 

In  technological fields, another important class of fluids, called non-New- 
tonian fluids, are also being studied extensively. The boundary-layer phenomenon 
in non-Newtonian fluids has also been studied by a number of research workers. 
One such fluid, whose constitutive equations are characterized by Walters 
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(1964, liquid B’), exhibits a boundary-layer phenomenon. The effect of unsteady 
fluctuations of the free-stream velocity on the flow in the boundary layer of an 
incompressible elastico-viscous fluid B‘ past an infinite flat porous plate with 
constant suction velocity was recently presented in a note by Kaloni (1967). 
Kaloni has discussed the conditions under which the modifications occur in the 
flow field of such fluids due to  the additional property of elasticity of the fluid. 
Detailed investigations of the effect of the elastic parameter k of such elastico- 
viscous fluid have not been carried out by him though it plays an important part 
in modifying the flow field. 

The effect of a variable suction velocity on the flow field of liquid B‘ has not 
been attempted so far. Hence the object of the present paper is to study the effect 
of the variable suction velocity of the form v;(l+eAeiw’’) as assumed by 
Messiha with the external flow velocity taken as UA( 1 + e eiw”), following 
Stuart. It is of interest to  study how Stuart’s and Messiha’s results get modified 
due to the presence of the elastic property of the fluid. Kaloni has not compared 
his results with those of Stuart. Hence in the present investigation, the results 
are compared with those of Stuart’s and Messiha’s thus bringing out the im- 
portant contribution to the flow field by the elastic property of the fluid. 

In  $2, the problem is suitably posed and solved in the case of velocity field. 
An amplitude and the phase of the skin-friction fluctuations, transient velocity 
profiles, fluctuating parts of the velocity profiles, are shown on the graphs. A 
comprehensive summary of results is presented in $ 3. 

A more general form for the free-stream fluctuations will be assumed in a 
subsequent paper to be presented soon. Such a study will lead to the showing of a 
number of important aspects of non-Newtonian fluids. 

2. Mathematical analysis 
The constitutive equations characterizing the elastico-viscous liquid B‘ are 

pik = -Pgik +p;ky ( 1 )  

where pik is the stress tensor, p an arbitrary isotropic pressure, gik the metric 
tensor of a fixed co-ordinate system xi, xti the position at  time t’ of the element 
which is instantaneously at the point xi at time t ,  e$? the rate of strain tensor and 

N(7)  being the distribution function of relaxation times 7. Walters (1962) has 
shown that in the case of liquids with short memories (i.e. short relaxation times), 
the equation of state can be written in a simplified form 

where 



Fluctuating flow of an elastico-viscous fluid 563 

is the limiting viscosity at small rates of shear, 

k, = I O m ~ N ( ~ )  d7, 

and S/St denotes the convected differentiation of a tensor quantity, which for 
any contravariant tensor bik is given as 

where vi is the velocity vector. 
Here the x‘-axis is chosen along st two-dimensional infinite plane wall and the 

y’-axis perpendicular to it. Under these conditions, the flow is independent of 
xi. Hence, from (l), (3) and (4), the flow of an incompressible elastico-viscous 
fluid is governed by the following equations of motion and continuity: 

It is evident from (7) that v’ is a function of time only. Hence, following Messiha, 
we consider vi as 

where vA is a non-zero constant mean suction velocity, e is small and A is a real 
positive constant such that € A  < 1. The negative sign in (8) indicates that the 
suction velocity normal to the wall is directed towards the wall. 

1, (8) v’ = - vA( 1 + eiw’t‘ 

In  view of (7), (5) and ( 6 )  reduce to 

where v = qo/p‘ and k t  = k,/p’. 

Also from (8) and (lo), as ap’/ayi is small in the boundary layer, it can be neglected. 
Hence the pressure is taken to be constant along any normal and is given by its 
value outside the boundary layer. If U’(ti) is the free-stream velocity, then (9) 
for the free stream becomes, 

36-2 
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The equations (9) and (1  1) give 
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The boundary conditions are 

u‘ = 0 at y’ = 0 and u‘ = U‘(t‘) as y’+.oo. (13) 

Let us now consider a periodic free-stream velocity of the form 

U’(t’)  = UA( 1 + s eio’f) (14) 

and let the velocity in the neighbourhood of the plate be 

u’(y’, t ’ )  = U;[fl(y’) +sedw’ff2(y’)], (15) 

where w‘ is the frequency of the fluctuating stream, UA = the mean of U’(t‘), 
s U ~  = the amplitude of the free-stream fluctuation, Uhfl = the mean velocity 
in the boundary layer, EUA f2 = the amplitude of the velocity fluctuation in the 
boundary layer. Substituting (14) and (15) in (12), comparing harmonic terms 
and neglecting coefficients of e2, we get 

kfy  +f’; + f; = 0, 

k f .  +fi( 1 - )kiw) + fi - i iwf2  = - )iw - Af - kAf’:, 
(16) 

(17) 

where the primes denote differentiation with respect to q and the non-dimensional 
quantities are defined as follows: 

(18) I 7 = y’vA/v, t = VA2tf/4V, w = 4vw’/v;2, 

u = U’/U& u = u’/u;, k = k,*v;2/v2. 

In view of (lfi), the boundary conditions (13) now reduce to 

fl = f2 = 0 at 7 = 0,  
f l = f 2 =  1 as q-tco. 

Equations (16) and (17) are the third-order differential equations when k + 0, 
and for k = 0 they reduce to equations governing the Newtonian fluid. Hence, 
the presence of the elasticity of the fluid increases the order of the governing 
equations from two to three and therefore they need three boundary conditions 
for their unique solution. But there are prescribed only two boundary conditions 
in (19). To overcome this difficulty, we follow Beard & Walters (1964) and 
assume the solution in the form as follows: 

which is valid for small values of k. As (3) is obtained from (2) on the same reason- 
ing, the approximation is valid. 
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Substituting (20) in (16) and (17) and equating the coefficients of k we have 
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f;;1+fh1= 0, (21) 

(22) 

f;2+f;)2-$iwfo2 = -$iw-Afhl, (23) 

f’;2+f;2-&~f12 = a i ~ f ~ 2 - f ~ ~ - A f ; , - A f ~ ~ ,  (24) 

f $  +& +f;l = 0, 

with the corresponding boundary conditions 

(25) 

Solving (21) to (24) under the boundary conditions (25 ) ,  we have, in view of 

(26) 
(201, 

f 0 l  = fll = f 0 2  = f i 2  = 0 at y = 0, 

f0 l  = t o 2  = 1, fll =f1z = 0 as y-tco. 

fi = 1 - e-7 + ky e-7, 
f 2  = 1 - S e - b -  (1 -8) e-q+k(( l -8)  (ech7- (1 -7) e-7) +Lye-”?}, (27) 

where S = 1 - 4 i A / ~ ,  h = +[I + (1 +i0)4]) 
h2(h + t i w )  (1 - 4iA/w) and L =  

(1 + io)) 

Hence the velocity field in the boundary layer is given by 

u = 1 - e-1 + ky e- + E e“t[l- S e-h7 - (1 - S) e-7 

+ k{( 1 - S )  (e-h7 - (1 - y) e-7) + e-hT}]. (29) 
We can now obtain the expression for the shearing stress from (1) and (3) as 

and in virtue of (18), (30) reduces to 

Hence from (29) and (31), we get 

Pzvl1]=0 = 1 + Eeid[( 1 - S )  (1 + k- & i d )  + h(X- k(1- S) 
- $ i ~ k X )  + k(L - A - Sh2)] (32) 

on neglecting the coefficient of e2. Hence from (29), 

u ( y ,  t )  = 1 - e-7 + ky e-9 + s(M, cos wt - M, sin wt), 

where M,, Mi are the fluctuating parts of the velocity profile and are given by 

M, = 1 + e-hrv [ (4A/w) ( 1 + k) sin hi y - cos hi y + yk{L, cos hi y + Li sin hi ?}I, 

H, = [((4A/w) (1 + k) + ykLJ cos hi? + (1 - ykL,) sin h, y] e-hTv 

(33) 

(34) 

(35) - (4A/w)[1 + k ( l -  y)] e-7, 
where h, = 8 + &{&[( 1 + W 2 ) t  + 1]}4 

h, = &(&[(1+w2)6- 1]}4 
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r2 = 1 +w2.  
Also from (32), we have 

where B = (1 - S) (1 + k - f iwk)  + h(S - k( 1 - S) - &iwkfJ) + k(L - A - Sh2) 
pzv = 1+@I cos(wt+a), (38) 

(39) 
= B, + iB,, 

01 = tan-l(Bi/B,), 

8Akhrh, B,= (1-kA)h,+ h,+kL,-k(h:-h?)---- 
w ’  

(4: kw) 4 w 

(41) 

4A B, = - (1 +k) -h, - (1 + k) + - +h,(l -kA) +kLZ+* (h:-hq) - 2kh,hi. 

For small values of the frequency parameter w, we have 

w 

h, = 1 + +%w2 + 0(@4), 

hi = 

L, = g[i + 2~ - (1 +&A) 4 4  + 0 ( ~ 4 ) ,  

- ~ ~ 3 )  + 0 ( ~ 5 ) ,  

Li = ( 1 / 1 6 w ) [ ( 4 + 3 A ) ~ ~ - 4 8 A ] + O ( ~ ~ ) ,  

M, = l + e - 7 [ - 1 + ( A + 2 A k + 4 E ) y - 2 A k y 2 + 0 2 { - 4 A k  

+ zz( 4 - 8A - 16k - Ak) 7 + &( 15 - 12A - 61% - 17Ak) 7 2  

+&(9 - A)y3 + ( 4 1 2 8 )  y4)] + O(w3),  

Mi = e-q{ - (7/w) Aky + &y[l -A - +AT + k( 1 - *A - $7 - %A7 

+ &3A y2)]} + O(w3) (42) 
and for large values of w, 

h,=- 1 +---I , 
2 [ ’ )‘+2(2w)d 8(2)*& 1+(  w 

1 

1 L, =z -- w++- 
16(2)* 32(2)* 

1 33+60A A 7-33A +- +-++ ( 2 w ) * (  128 ) 16w 32(8w)s’ 
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w2 150 33 +-+- -- _- it [ 16(2)4+3- 2 128(2)4 

567 

4iA exp[-&y(iw)t]+1---e-lr 
w 

From (33), we get for ot = Qn, 

where Mi is given by (35). 
u = 1 - e-7 + ky e-11 -EM,, (44) 

-o'2 - 0.4 t 
FIGURE 1. Velocity profiles. ot = in, E = 0.5, o = 10, 100, A = 0. - , k = 0; 

k = 0.05; -.-.- , k = 0.1. --_ 

In  order to study the effect of the elastic property of the elastico-viscous fluid 
on the distribution of the velocity profiles near the wall, both in the case of 
constant and variable suction, we have plotted u against y in figures 1 to 4 for 
different values of A ,  w ,  k and E .  It was observed by Stuart that for E = 0.5 and 
w = 100 ( i w  = h in Stuart's case) the velocity is negative near the wall, which is 
also shown in our figure 1 for k = 0. But the graphs in figure 1 for non-zero values 
of k are particularly interesting in the sense that, with an increase in the value of 
I%, the velocity becomes still more negative near the wall for e = 0-5 and w = 100. 
This leads us to study the nature of the velocity profiles for smaller values of e 
and w. Thus, it can be seen from the velocity profiles in figure 2 that in the case 
of elastico-viscous fluids, for very small values of k, the velocity is observed to be 
negative even for smaller values of e and w viz. e = 0.2 and w = 80. Hence, in the 
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7/ -0.01 l. 

FIGURE 2. Velocity profiles. 
wt = @, k = 0.05, A = 0, 
8 = 0.2. 

0 1 2 3 4 

71 

FIGURE 3. Velocity profiles. E = 0.2, wt = in, 
6~ = 10, k = 0.05. 

0.8 !- 

I I 

4 

FICUFLE 4. Velocit,y profiles. wt = hn, K = 0, A = 0.2, 0.4. - , E = 0.2; 
, E  = 0.5. _ _ _  
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case of constant suction velocity, the separation occurs at the wall even for small 
values of E and w.  Figure 4 is prepared to bring out the effects of the variable 
suction velocity on the separation of the fluid at  the wall. This is Messiha's case. 
Messiha has not discussed the nature of the velocity profiles at  large w ,  in the 
presence of the variable suction velocity. From figure 4, it is evident that at 
large w ,  the velocity approaches to a positive value near the wall when there is an 
increase in A .  Hence to avoid the separation near the wall, variable suction may 
be employed. 

4 
FIGURE 5. Fluctuating part of the velocity profile. A = 0, w = 10, 100. - , k = 0; 

k = 0.05; -._.- , k = 0.1. _ _ _  

In figures 5-8, the details about the fluctuating parts are shown for compari- 
son purposes. In  case of constant suction velocity ( A  = 0) ,  an increase in k or w 
leads to an increase in M,. and Mi. Figure 7 is particularly interesting because it 
illustrates the effects of k at large w on Mi when suction velocity is constant. In  
the case of the fluids with elastic property, at  large w ,  there is a sudden rise and 
fall of Mi near the wall, which is not observed in ordinary Newtonian fluids. Also, 
from figures 6 and 7, one can conclude that an increase in A or o leads to an in- 
crease in M,. but a decrease in Mi. 

Figure 9 illustrates the effects of A and k on the amplitude of the skin-friction. 
Messiha observed that an increase in A leads to an increase in the amplitude of 
the skin-friction. The same is also true in case of elastico-viscous fluids (type B'). 
I BI increases with increasing w and A .  But for the same value of A ,  an increase 
in k leads to a decrease in I B1. 

Figures 10 and 11 illustrate the effects of k and A on the skin-friction phase. 
It was observed by Stuart that the skin-friction phase rises from zero at  zero fre- 
quency, to $71 at very high frequencies. This is shown in figure 10, where k = 0, 
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A = 0 corresponds to Stuart's case. The other three curves show the effect of k on 
the phase of the skin-friction. It is interesting to note that an increase in k leads to 
a decrease in the phase of the skin-friction at large w. As a particular case, one can 
observe from figure 10 that t ana  = 0 when w = 57 and k = 0.1, from which we 
can conclude that the skin-friction oscillates in phase with the on-coming 
fluctuating main-stream. For w > 57, the phase of the skin-friction is negative. 

w = 100 

1 .o 

0.8 

0.6 

ah 

0.4 

0.2 

0 0-2 1 2 
11 

, k = 0.1. 
FIGURE 6. Fluctuating parts of velocity profiles. -, k = 0 .  _-_  

-.-.- 
k = 0-05; 

0.4 

0 

- 0.2 

, k = 0.05;  FIGURE '7. Fluctuating part of velocity profile. A = 0. - , k  = o;--- 
, k = 0.1. -.-.- 
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In  figure 11,  the results are compared with those of Messiha who observed that 
an increase in A leads to a decrease in the phase of the skin-friction but it increases 
with w. This is shown in figure 11 by continuous lines. Messiha has also com- 
mented that for small values of the frequency parameter w ,  the phase of the skin- 
friction may be negative. The same is true for elastico-viscous fluids (liquid B'). 
An increase in k leads to a decrease in the phase as in the case of constant 
suction velocity. At large w ,  the trend is again towards a decrease. 

0 0.2 1 2 3 
71 

FIGURE 8. Fluctuating part of velocity profile. A = 0.4, 0.8, w = 10, 100. ~ , k = 0 ;  
, k = 0.1. _-- k = 0.05; -._._ 

3c 

1 I 1 I I I I I 1 I 
2 4 6 8 10 12 14 16 18 20 

w 

FIGURE 9. Amplitude of the skin-friction against frequency o. A = 0, 0.2, 0.4, 0.6, 0.8. 
k = 0; ---, k = 0.05; -._._ , k = 0.1. 

3. Conclusions 
We summarize here some of our important results. (a )  Due to  the elastic 

property of the fluid, the back-flow occurs at the wall at values ofs and w smaller 
than those in case of Newtonian fluids. ( b )  The fluctuating parts M, and Xi 
increase with increasing k, the elastic parameter. (c )  In the case of constant suc- 
tion velocity ( A  = 0) ,  the amplitude of the skin-friction is affected significantly 
at  large values of w.  An increase in A and k leads to an increase in the amplitude 
of the skin-friction. But for the same A,  an increase in k leads to a decrease in 
1 BI . (d)  In  the case of constant suction velocity, an increase in k and w lead5 
to  a decrease in the phase of the skin-friction. For moderately large k, the phase 
reduces to zero and then becomes negative even for lesser values of w.  The 
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phase of the skin-friction decreases with increasing A .  For moderately large A 
and k, the phase may become negative for all values of o. 

We are grateful to the referee of our paper for his suggestions which led to the 
improvement of the paper. We are also grateful to Prof. M. J. Lighthill for his 
kindness and interest in our work. 

1 .o 

0.8 

0.6 

0.4 8 

2 
&l 

0.2 

0 

-0.2 

0.6 

FIGURE 10. Skin-friction phase us. o. A = 0. 

-- -- 
0.4 --_- - --_ 
0.2 

0 2 4 6 8 10 12 14 16 18 20 

0 

FIGURE 11. Skin-friction phase m. w .  A = 0, 0.2, 0.4. - , k = O ;  
---, k = 0.05; _._._ , k = 0.1. 
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